3.487 \(\int (e x)^m (A+B x) (a+c x^2)^2 \, dx\)

Optimal. Leaf size=121 \[ \frac {a^2 A (e x)^{m+1}}{e (m+1)}+\frac {a^2 B (e x)^{m+2}}{e^2 (m+2)}+\frac {2 a A c (e x)^{m+3}}{e^3 (m+3)}+\frac {2 a B c (e x)^{m+4}}{e^4 (m+4)}+\frac {A c^2 (e x)^{m+5}}{e^5 (m+5)}+\frac {B c^2 (e x)^{m+6}}{e^6 (m+6)} \]

[Out]

a^2*A*(e*x)^(1+m)/e/(1+m)+a^2*B*(e*x)^(2+m)/e^2/(2+m)+2*a*A*c*(e*x)^(3+m)/e^3/(3+m)+2*a*B*c*(e*x)^(4+m)/e^4/(4
+m)+A*c^2*(e*x)^(5+m)/e^5/(5+m)+B*c^2*(e*x)^(6+m)/e^6/(6+m)

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 121, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {766} \[ \frac {a^2 A (e x)^{m+1}}{e (m+1)}+\frac {a^2 B (e x)^{m+2}}{e^2 (m+2)}+\frac {2 a A c (e x)^{m+3}}{e^3 (m+3)}+\frac {2 a B c (e x)^{m+4}}{e^4 (m+4)}+\frac {A c^2 (e x)^{m+5}}{e^5 (m+5)}+\frac {B c^2 (e x)^{m+6}}{e^6 (m+6)} \]

Antiderivative was successfully verified.

[In]

Int[(e*x)^m*(A + B*x)*(a + c*x^2)^2,x]

[Out]

(a^2*A*(e*x)^(1 + m))/(e*(1 + m)) + (a^2*B*(e*x)^(2 + m))/(e^2*(2 + m)) + (2*a*A*c*(e*x)^(3 + m))/(e^3*(3 + m)
) + (2*a*B*c*(e*x)^(4 + m))/(e^4*(4 + m)) + (A*c^2*(e*x)^(5 + m))/(e^5*(5 + m)) + (B*c^2*(e*x)^(6 + m))/(e^6*(
6 + m))

Rule 766

Int[((e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(e*x
)^m*(f + g*x)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, e, f, g, m}, x] && IGtQ[p, 0]

Rubi steps

\begin {align*} \int (e x)^m (A+B x) \left (a+c x^2\right )^2 \, dx &=\int \left (a^2 A (e x)^m+\frac {a^2 B (e x)^{1+m}}{e}+\frac {2 a A c (e x)^{2+m}}{e^2}+\frac {2 a B c (e x)^{3+m}}{e^3}+\frac {A c^2 (e x)^{4+m}}{e^4}+\frac {B c^2 (e x)^{5+m}}{e^5}\right ) \, dx\\ &=\frac {a^2 A (e x)^{1+m}}{e (1+m)}+\frac {a^2 B (e x)^{2+m}}{e^2 (2+m)}+\frac {2 a A c (e x)^{3+m}}{e^3 (3+m)}+\frac {2 a B c (e x)^{4+m}}{e^4 (4+m)}+\frac {A c^2 (e x)^{5+m}}{e^5 (5+m)}+\frac {B c^2 (e x)^{6+m}}{e^6 (6+m)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 74, normalized size = 0.61 \[ x (e x)^m \left (a^2 \left (\frac {A}{m+1}+\frac {B x}{m+2}\right )+2 a c x^2 \left (\frac {A}{m+3}+\frac {B x}{m+4}\right )+c^2 x^4 \left (\frac {A}{m+5}+\frac {B x}{m+6}\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[(e*x)^m*(A + B*x)*(a + c*x^2)^2,x]

[Out]

x*(e*x)^m*(a^2*(A/(1 + m) + (B*x)/(2 + m)) + 2*a*c*x^2*(A/(3 + m) + (B*x)/(4 + m)) + c^2*x^4*(A/(5 + m) + (B*x
)/(6 + m)))

________________________________________________________________________________________

fricas [B]  time = 0.84, size = 343, normalized size = 2.83 \[ \frac {{\left ({\left (B c^{2} m^{5} + 15 \, B c^{2} m^{4} + 85 \, B c^{2} m^{3} + 225 \, B c^{2} m^{2} + 274 \, B c^{2} m + 120 \, B c^{2}\right )} x^{6} + {\left (A c^{2} m^{5} + 16 \, A c^{2} m^{4} + 95 \, A c^{2} m^{3} + 260 \, A c^{2} m^{2} + 324 \, A c^{2} m + 144 \, A c^{2}\right )} x^{5} + 2 \, {\left (B a c m^{5} + 17 \, B a c m^{4} + 107 \, B a c m^{3} + 307 \, B a c m^{2} + 396 \, B a c m + 180 \, B a c\right )} x^{4} + 2 \, {\left (A a c m^{5} + 18 \, A a c m^{4} + 121 \, A a c m^{3} + 372 \, A a c m^{2} + 508 \, A a c m + 240 \, A a c\right )} x^{3} + {\left (B a^{2} m^{5} + 19 \, B a^{2} m^{4} + 137 \, B a^{2} m^{3} + 461 \, B a^{2} m^{2} + 702 \, B a^{2} m + 360 \, B a^{2}\right )} x^{2} + {\left (A a^{2} m^{5} + 20 \, A a^{2} m^{4} + 155 \, A a^{2} m^{3} + 580 \, A a^{2} m^{2} + 1044 \, A a^{2} m + 720 \, A a^{2}\right )} x\right )} \left (e x\right )^{m}}{m^{6} + 21 \, m^{5} + 175 \, m^{4} + 735 \, m^{3} + 1624 \, m^{2} + 1764 \, m + 720} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(B*x+A)*(c*x^2+a)^2,x, algorithm="fricas")

[Out]

((B*c^2*m^5 + 15*B*c^2*m^4 + 85*B*c^2*m^3 + 225*B*c^2*m^2 + 274*B*c^2*m + 120*B*c^2)*x^6 + (A*c^2*m^5 + 16*A*c
^2*m^4 + 95*A*c^2*m^3 + 260*A*c^2*m^2 + 324*A*c^2*m + 144*A*c^2)*x^5 + 2*(B*a*c*m^5 + 17*B*a*c*m^4 + 107*B*a*c
*m^3 + 307*B*a*c*m^2 + 396*B*a*c*m + 180*B*a*c)*x^4 + 2*(A*a*c*m^5 + 18*A*a*c*m^4 + 121*A*a*c*m^3 + 372*A*a*c*
m^2 + 508*A*a*c*m + 240*A*a*c)*x^3 + (B*a^2*m^5 + 19*B*a^2*m^4 + 137*B*a^2*m^3 + 461*B*a^2*m^2 + 702*B*a^2*m +
 360*B*a^2)*x^2 + (A*a^2*m^5 + 20*A*a^2*m^4 + 155*A*a^2*m^3 + 580*A*a^2*m^2 + 1044*A*a^2*m + 720*A*a^2)*x)*(e*
x)^m/(m^6 + 21*m^5 + 175*m^4 + 735*m^3 + 1624*m^2 + 1764*m + 720)

________________________________________________________________________________________

giac [B]  time = 0.18, size = 586, normalized size = 4.84 \[ \frac {B c^{2} m^{5} x^{6} x^{m} e^{m} + A c^{2} m^{5} x^{5} x^{m} e^{m} + 15 \, B c^{2} m^{4} x^{6} x^{m} e^{m} + 2 \, B a c m^{5} x^{4} x^{m} e^{m} + 16 \, A c^{2} m^{4} x^{5} x^{m} e^{m} + 85 \, B c^{2} m^{3} x^{6} x^{m} e^{m} + 2 \, A a c m^{5} x^{3} x^{m} e^{m} + 34 \, B a c m^{4} x^{4} x^{m} e^{m} + 95 \, A c^{2} m^{3} x^{5} x^{m} e^{m} + 225 \, B c^{2} m^{2} x^{6} x^{m} e^{m} + B a^{2} m^{5} x^{2} x^{m} e^{m} + 36 \, A a c m^{4} x^{3} x^{m} e^{m} + 214 \, B a c m^{3} x^{4} x^{m} e^{m} + 260 \, A c^{2} m^{2} x^{5} x^{m} e^{m} + 274 \, B c^{2} m x^{6} x^{m} e^{m} + A a^{2} m^{5} x x^{m} e^{m} + 19 \, B a^{2} m^{4} x^{2} x^{m} e^{m} + 242 \, A a c m^{3} x^{3} x^{m} e^{m} + 614 \, B a c m^{2} x^{4} x^{m} e^{m} + 324 \, A c^{2} m x^{5} x^{m} e^{m} + 120 \, B c^{2} x^{6} x^{m} e^{m} + 20 \, A a^{2} m^{4} x x^{m} e^{m} + 137 \, B a^{2} m^{3} x^{2} x^{m} e^{m} + 744 \, A a c m^{2} x^{3} x^{m} e^{m} + 792 \, B a c m x^{4} x^{m} e^{m} + 144 \, A c^{2} x^{5} x^{m} e^{m} + 155 \, A a^{2} m^{3} x x^{m} e^{m} + 461 \, B a^{2} m^{2} x^{2} x^{m} e^{m} + 1016 \, A a c m x^{3} x^{m} e^{m} + 360 \, B a c x^{4} x^{m} e^{m} + 580 \, A a^{2} m^{2} x x^{m} e^{m} + 702 \, B a^{2} m x^{2} x^{m} e^{m} + 480 \, A a c x^{3} x^{m} e^{m} + 1044 \, A a^{2} m x x^{m} e^{m} + 360 \, B a^{2} x^{2} x^{m} e^{m} + 720 \, A a^{2} x x^{m} e^{m}}{m^{6} + 21 \, m^{5} + 175 \, m^{4} + 735 \, m^{3} + 1624 \, m^{2} + 1764 \, m + 720} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(B*x+A)*(c*x^2+a)^2,x, algorithm="giac")

[Out]

(B*c^2*m^5*x^6*x^m*e^m + A*c^2*m^5*x^5*x^m*e^m + 15*B*c^2*m^4*x^6*x^m*e^m + 2*B*a*c*m^5*x^4*x^m*e^m + 16*A*c^2
*m^4*x^5*x^m*e^m + 85*B*c^2*m^3*x^6*x^m*e^m + 2*A*a*c*m^5*x^3*x^m*e^m + 34*B*a*c*m^4*x^4*x^m*e^m + 95*A*c^2*m^
3*x^5*x^m*e^m + 225*B*c^2*m^2*x^6*x^m*e^m + B*a^2*m^5*x^2*x^m*e^m + 36*A*a*c*m^4*x^3*x^m*e^m + 214*B*a*c*m^3*x
^4*x^m*e^m + 260*A*c^2*m^2*x^5*x^m*e^m + 274*B*c^2*m*x^6*x^m*e^m + A*a^2*m^5*x*x^m*e^m + 19*B*a^2*m^4*x^2*x^m*
e^m + 242*A*a*c*m^3*x^3*x^m*e^m + 614*B*a*c*m^2*x^4*x^m*e^m + 324*A*c^2*m*x^5*x^m*e^m + 120*B*c^2*x^6*x^m*e^m
+ 20*A*a^2*m^4*x*x^m*e^m + 137*B*a^2*m^3*x^2*x^m*e^m + 744*A*a*c*m^2*x^3*x^m*e^m + 792*B*a*c*m*x^4*x^m*e^m + 1
44*A*c^2*x^5*x^m*e^m + 155*A*a^2*m^3*x*x^m*e^m + 461*B*a^2*m^2*x^2*x^m*e^m + 1016*A*a*c*m*x^3*x^m*e^m + 360*B*
a*c*x^4*x^m*e^m + 580*A*a^2*m^2*x*x^m*e^m + 702*B*a^2*m*x^2*x^m*e^m + 480*A*a*c*x^3*x^m*e^m + 1044*A*a^2*m*x*x
^m*e^m + 360*B*a^2*x^2*x^m*e^m + 720*A*a^2*x*x^m*e^m)/(m^6 + 21*m^5 + 175*m^4 + 735*m^3 + 1624*m^2 + 1764*m +
720)

________________________________________________________________________________________

maple [B]  time = 0.05, size = 395, normalized size = 3.26 \[ \frac {\left (B \,c^{2} m^{5} x^{5}+A \,c^{2} m^{5} x^{4}+15 B \,c^{2} m^{4} x^{5}+16 A \,c^{2} m^{4} x^{4}+2 B a c \,m^{5} x^{3}+85 B \,c^{2} m^{3} x^{5}+2 A a c \,m^{5} x^{2}+95 A \,c^{2} m^{3} x^{4}+34 B a c \,m^{4} x^{3}+225 B \,c^{2} m^{2} x^{5}+36 A a c \,m^{4} x^{2}+260 A \,c^{2} m^{2} x^{4}+B \,a^{2} m^{5} x +214 B a c \,m^{3} x^{3}+274 B \,c^{2} m \,x^{5}+A \,a^{2} m^{5}+242 A a c \,m^{3} x^{2}+324 A \,c^{2} m \,x^{4}+19 B \,a^{2} m^{4} x +614 B a c \,m^{2} x^{3}+120 B \,c^{2} x^{5}+20 A \,a^{2} m^{4}+744 A a c \,m^{2} x^{2}+144 A \,c^{2} x^{4}+137 B \,a^{2} m^{3} x +792 B a c m \,x^{3}+155 A \,a^{2} m^{3}+1016 A a c m \,x^{2}+461 B \,a^{2} m^{2} x +360 B a c \,x^{3}+580 A \,a^{2} m^{2}+480 A a c \,x^{2}+702 B \,a^{2} m x +1044 A \,a^{2} m +360 B \,a^{2} x +720 A \,a^{2}\right ) x \left (e x \right )^{m}}{\left (m +6\right ) \left (m +5\right ) \left (m +4\right ) \left (m +3\right ) \left (m +2\right ) \left (m +1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(B*x+A)*(c*x^2+a)^2,x)

[Out]

x*(B*c^2*m^5*x^5+A*c^2*m^5*x^4+15*B*c^2*m^4*x^5+16*A*c^2*m^4*x^4+2*B*a*c*m^5*x^3+85*B*c^2*m^3*x^5+2*A*a*c*m^5*
x^2+95*A*c^2*m^3*x^4+34*B*a*c*m^4*x^3+225*B*c^2*m^2*x^5+36*A*a*c*m^4*x^2+260*A*c^2*m^2*x^4+B*a^2*m^5*x+214*B*a
*c*m^3*x^3+274*B*c^2*m*x^5+A*a^2*m^5+242*A*a*c*m^3*x^2+324*A*c^2*m*x^4+19*B*a^2*m^4*x+614*B*a*c*m^2*x^3+120*B*
c^2*x^5+20*A*a^2*m^4+744*A*a*c*m^2*x^2+144*A*c^2*x^4+137*B*a^2*m^3*x+792*B*a*c*m*x^3+155*A*a^2*m^3+1016*A*a*c*
m*x^2+461*B*a^2*m^2*x+360*B*a*c*x^3+580*A*a^2*m^2+480*A*a*c*x^2+702*B*a^2*m*x+1044*A*a^2*m+360*B*a^2*x+720*A*a
^2)*(e*x)^m/(m+6)/(m+5)/(m+4)/(m+3)/(m+2)/(m+1)

________________________________________________________________________________________

maxima [A]  time = 0.61, size = 116, normalized size = 0.96 \[ \frac {B c^{2} e^{m} x^{6} x^{m}}{m + 6} + \frac {A c^{2} e^{m} x^{5} x^{m}}{m + 5} + \frac {2 \, B a c e^{m} x^{4} x^{m}}{m + 4} + \frac {2 \, A a c e^{m} x^{3} x^{m}}{m + 3} + \frac {B a^{2} e^{m} x^{2} x^{m}}{m + 2} + \frac {\left (e x\right )^{m + 1} A a^{2}}{e {\left (m + 1\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*(B*x+A)*(c*x^2+a)^2,x, algorithm="maxima")

[Out]

B*c^2*e^m*x^6*x^m/(m + 6) + A*c^2*e^m*x^5*x^m/(m + 5) + 2*B*a*c*e^m*x^4*x^m/(m + 4) + 2*A*a*c*e^m*x^3*x^m/(m +
 3) + B*a^2*e^m*x^2*x^m/(m + 2) + (e*x)^(m + 1)*A*a^2/(e*(m + 1))

________________________________________________________________________________________

mupad [B]  time = 1.28, size = 371, normalized size = 3.07 \[ {\left (e\,x\right )}^m\,\left (\frac {A\,a^2\,x\,\left (m^5+20\,m^4+155\,m^3+580\,m^2+1044\,m+720\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {B\,a^2\,x^2\,\left (m^5+19\,m^4+137\,m^3+461\,m^2+702\,m+360\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {A\,c^2\,x^5\,\left (m^5+16\,m^4+95\,m^3+260\,m^2+324\,m+144\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {B\,c^2\,x^6\,\left (m^5+15\,m^4+85\,m^3+225\,m^2+274\,m+120\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {2\,A\,a\,c\,x^3\,\left (m^5+18\,m^4+121\,m^3+372\,m^2+508\,m+240\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}+\frac {2\,B\,a\,c\,x^4\,\left (m^5+17\,m^4+107\,m^3+307\,m^2+396\,m+180\right )}{m^6+21\,m^5+175\,m^4+735\,m^3+1624\,m^2+1764\,m+720}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*(a + c*x^2)^2*(A + B*x),x)

[Out]

(e*x)^m*((A*a^2*x*(1044*m + 580*m^2 + 155*m^3 + 20*m^4 + m^5 + 720))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 +
21*m^5 + m^6 + 720) + (B*a^2*x^2*(702*m + 461*m^2 + 137*m^3 + 19*m^4 + m^5 + 360))/(1764*m + 1624*m^2 + 735*m^
3 + 175*m^4 + 21*m^5 + m^6 + 720) + (A*c^2*x^5*(324*m + 260*m^2 + 95*m^3 + 16*m^4 + m^5 + 144))/(1764*m + 1624
*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) + (B*c^2*x^6*(274*m + 225*m^2 + 85*m^3 + 15*m^4 + m^5 + 120))/(
1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) + (2*A*a*c*x^3*(508*m + 372*m^2 + 121*m^3 + 18*m^4
 + m^5 + 240))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720) + (2*B*a*c*x^4*(396*m + 307*m^2 +
107*m^3 + 17*m^4 + m^5 + 180))/(1764*m + 1624*m^2 + 735*m^3 + 175*m^4 + 21*m^5 + m^6 + 720))

________________________________________________________________________________________

sympy [A]  time = 1.73, size = 2076, normalized size = 17.16 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*(B*x+A)*(c*x**2+a)**2,x)

[Out]

Piecewise(((-A*a**2/(5*x**5) - 2*A*a*c/(3*x**3) - A*c**2/x - B*a**2/(4*x**4) - B*a*c/x**2 + B*c**2*log(x))/e**
6, Eq(m, -6)), ((-A*a**2/(4*x**4) - A*a*c/x**2 + A*c**2*log(x) - B*a**2/(3*x**3) - 2*B*a*c/x + B*c**2*x)/e**5,
 Eq(m, -5)), ((-A*a**2/(3*x**3) - 2*A*a*c/x + A*c**2*x - B*a**2/(2*x**2) + 2*B*a*c*log(x) + B*c**2*x**2/2)/e**
4, Eq(m, -4)), ((-A*a**2/(2*x**2) + 2*A*a*c*log(x) + A*c**2*x**2/2 - B*a**2/x + 2*B*a*c*x + B*c**2*x**3/3)/e**
3, Eq(m, -3)), ((-A*a**2/x + 2*A*a*c*x + A*c**2*x**3/3 + B*a**2*log(x) + B*a*c*x**2 + B*c**2*x**4/4)/e**2, Eq(
m, -2)), ((A*a**2*log(x) + A*a*c*x**2 + A*c**2*x**4/4 + B*a**2*x + 2*B*a*c*x**3/3 + B*c**2*x**5/5)/e, Eq(m, -1
)), (A*a**2*e**m*m**5*x*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 20*A*a**2*e**
m*m**4*x*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 155*A*a**2*e**m*m**3*x*x**m/
(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 580*A*a**2*e**m*m**2*x*x**m/(m**6 + 21*m**
5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 1044*A*a**2*e**m*m*x*x**m/(m**6 + 21*m**5 + 175*m**4 + 7
35*m**3 + 1624*m**2 + 1764*m + 720) + 720*A*a**2*e**m*x*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2
 + 1764*m + 720) + 2*A*a*c*e**m*m**5*x**3*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 72
0) + 36*A*a*c*e**m*m**4*x**3*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 242*A*a*
c*e**m*m**3*x**3*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 744*A*a*c*e**m*m**2*
x**3*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 1016*A*a*c*e**m*m*x**3*x**m/(m**
6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 480*A*a*c*e**m*x**3*x**m/(m**6 + 21*m**5 + 175
*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + A*c**2*e**m*m**5*x**5*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**
3 + 1624*m**2 + 1764*m + 720) + 16*A*c**2*e**m*m**4*x**5*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**
2 + 1764*m + 720) + 95*A*c**2*e**m*m**3*x**5*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m +
 720) + 260*A*c**2*e**m*m**2*x**5*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 324
*A*c**2*e**m*m*x**5*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 144*A*c**2*e**m*x
**5*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + B*a**2*e**m*m**5*x**2*x**m/(m**6
+ 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 19*B*a**2*e**m*m**4*x**2*x**m/(m**6 + 21*m**5 +
175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 137*B*a**2*e**m*m**3*x**2*x**m/(m**6 + 21*m**5 + 175*m**4 +
735*m**3 + 1624*m**2 + 1764*m + 720) + 461*B*a**2*e**m*m**2*x**2*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 +
1624*m**2 + 1764*m + 720) + 702*B*a**2*e**m*m*x**2*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 17
64*m + 720) + 360*B*a**2*e**m*x**2*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 2*
B*a*c*e**m*m**5*x**4*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 34*B*a*c*e**m*m*
*4*x**4*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 214*B*a*c*e**m*m**3*x**4*x**m
/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 614*B*a*c*e**m*m**2*x**4*x**m/(m**6 + 21*
m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 792*B*a*c*e**m*m*x**4*x**m/(m**6 + 21*m**5 + 175*m**4
 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 360*B*a*c*e**m*x**4*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 162
4*m**2 + 1764*m + 720) + B*c**2*e**m*m**5*x**6*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m
 + 720) + 15*B*c**2*e**m*m**4*x**6*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 85
*B*c**2*e**m*m**3*x**6*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 225*B*c**2*e**
m*m**2*x**6*x**m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 274*B*c**2*e**m*m*x**6*x*
*m/(m**6 + 21*m**5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720) + 120*B*c**2*e**m*x**6*x**m/(m**6 + 21*m*
*5 + 175*m**4 + 735*m**3 + 1624*m**2 + 1764*m + 720), True))

________________________________________________________________________________________